More than one million acres have been surface mined for coal in Appalachia. Today, much of this land is unmanaged, unproductive, and covered with non-native plants. Establishing productive forests on such lands will aid restoration of ecosystem services provided by forests – services such as watershed protection, water quality enhancement, carbon storage and native wildlife habitat – and will enable mined lands to produce valued products such as commercial timber.

This Advisory describes practices for establishing native forest trees on lands that were surface mined for coal and reclaimed to meet legal standards, and where the mine operator no longer has any legal responsibilities ("legacy surface mines," Photo 1). These lands often differ from their pre-mining condition with respect to topography, soils, water resource influences, and vegetation.

Successful establishment of native forest trees on legacy mines typically requires a sequence of steps or procedures over several years. Here, we describe those steps as the “four P’s”: Plan, Prepare, Plant, and Protect. All four steps are needed to ensure success. Some project managers may desire more technical detail than we have provided here. Hence, we reference other Forest Reclamation Advisories that provide detail and suggest that reforestation experts be consulted if necessary.

PLAN: Assess the Site and Develop a Plan
The first step is to develop a reforestation plan or strategy by assessing site conditions. Preparing a written plan will aid the reforestation process. First, visit the site, assess vegetation and site conditions, and develop a vegetation management strategy that will enable planted trees to survive. A site map or aerial photo will aid this task. On the map, delineate and mark areas with 1) different types and amounts of vegetation (e.g., good growth of native trees, dominance of invasive species, complete herbaceous cover, extensive bare soil, etc.), 2) land slope, 3) aspect (direction the slopes are facing), 4) soil sampling locations, 5) property lines, 6) roads and access, and other information that will aid planning.

Areas with a thick cover of non-native shrubs and trees will require clearing prior to replanting. Because the non-native shrubs and trees that proliferate on Appalachian coal mines – including autumn olive, tree of heaven, and Paulownia – will re-sprout from living roots even if their tops are cut, they should be killed with an herbicide.

When mine sites are dominated by non-native herbaceous species such as tall fescue and sericea lespedeza, we also advise killing them with an herbicide. This control will be temporary as seeds in the soil will germinate. However, this temporary control will allow tree seedlings to get a good growing start before competing plants emerge from the soil seedbank. Successful reforestation...
requires control of competing vegetation until planted trees grow and become established.

Assess Mine Soil Physical Properties

Surface soils on many sites have been compacted by mining equipment, and most mine soils have become dense over time. A dense soil restricts tree root growth and limits water and air movement. Therefore, loosening such soils will improve survival and growth of planted trees. Dense mine soils can be loosened using deep tillage, a process commonly known as “soil ripping.” A site survey in advance of reforestation can determine where deep tillage can be applied. Slopes up to 30% can be ripped with a bulldozer. Slopes up to 40% can be ripped using a tracked excavator with a ripping bar mounted on the end of the arm.

In our experience, almost all legacy mine sites have dense soils and will become more favorable to reforestation if loosened with deep tillage. Growth of established trees, digging of soil pits, use of soil penetrometers if spoil materials are not too rocky, and other procedures can be used to evaluate soil compaction and the need for deep tillage. The presence of wetland vegetation on upland sites may also indicate compacted areas. Ripping all areas with <30% slopes is recommended on legacy surface mines. Flat areas are especially prone to physical settling and compaction. Steeper slopes (greater than 30%) may or may not require ripping.

Designate areas that are suitable for soil ripping (not steeply sloped) on a site map similar to that used for the vegetation survey. The area designated for ripping can be used to estimate the cost.

Assess Mine Soil Chemical Properties

Many legacy mine sites have soil chemical properties that are adequate for trees (Zipper et al. 2011) but it is prudent to check soil properties. This can be accomplished by obtaining soil samples while walking the site. A soil sample should be collected from each area expected to have a different type of soil, or with differing vegetation that indicates possible soil differences. Soil areas that are strongly acidic or have other major problems can often be identified visually from sparse vegetation. Vegetation which is yellow or otherwise discolored can indicate poor soil quality, lack of adequate soil nutrients or soil moisture problems. Such areas can be sampled separately.

Procedures for obtaining a soil sample are described in publications of soil testing laboratories. Sampling procedures recommended for natural soils can also be applied to mine soils. The locations for each sample taken, and the area it is intended to represent, should be recorded on the site map. The soil sample can be sent to a soil testing lab for analysis. If the soil testing lab provides special tests for mine soils, those tests should be requested. When sampling mine soils, be aware that mine operators may have applied a layer of topsoil, subsoil, or soil substitute material on the surface to serve as the growth medium. Since soil ripping may pull up subsurface mine soils that are different than the surface layer, if possible, check the mining and reclamation history of the site and/or dig several test pits down to two or three feet as needed to check subsoil materials.

Common soil testing procedures are intended for garden or agricultural soils which are quite different from mine soils. Hence, much of the information provided by the soil testing laboratory will not apply and can be ignored. Essential soil test results for mine soils are:

Soil pH: If pH is between 5.5 and 6.5, soil chemical properties are likely to be suitable for native hardwood trees. If soil pH is less than 5.0, lime should be applied as recommended by the soil test report to raise soil pH to the 5.5 – 6.5 range, or acid-tolerant trees such as pines and selected hardwoods should be planted. If pH is less than 4.0 or if you suspect acid-producing minerals are present, more detailed soil investigations should be conducted. If soil pH is 7.0 or higher, the tree-planting prescription should use species that can tolerate high-pH soils.

Salinity: On the surfaces of mine soils that have been in place for at least five years, soluble salts should be similar to the range that is typical for natural soils in the area. If soluble salt levels at the surface remain significantly above what is typical for natural soils, a more detailed soil investigation is advised.

Minor nutrients: If the soil test shows low levels of one or more micronutrients, a micronutrient mix should be included in the fertilizer application.

Standard soil tests for nitrogen (N) and phosphorus (P) are unreliable when applied to mine soils constructed from rock spoils. Fertilizer with N and P should always be applied because most mine spoils contain little of these nutrients in plant available forms. Other essential macronutrients — calcium (Ca), magnesium (Mg), potassium (K), and sulfur (S) — are usually present in mine soils in adequate quantities.

If the site is so acidic or alkaline that very little vegetation is growing, the soils likely contain problematic minerals. For such lands, more detailed soil investigations are advised. The guidelines of this publication may not be an appropriate treatment for such lands.
Plan for Tree Planting

An essential planning step is to select the types of trees to be planted. The landowner’s intended use for the site will influence this choice. In most cases, mined land will be suitable for mixed Appalachian hardwoods. Forest Reclamation Advisory No. 9 may be consulted to aid tree species selection and planting design. If the landowner intends to produce woody biomass, fast growing species can be planted. Tree selection can also consider habitat needs for rare species such as the Indiana Bat (see Forest Reclamation Advisory No. 10). Landowners may consult a forester with mined land experience to advise on tree species selection.

Tree-planting arrangements should be made in the summer or fall prior to planting. As explained in Forest Reclamation Advisory No. 7, seedlings can be ordered from private sources or from state nurseries. If a contractor will do the planting, the contractor may also be willing to order and provide the seedlings.

PREPARE the Mined Site for Planting

Control Competing Vegetation

It is essential that pre-existing vegetation be controlled because it will otherwise compete with planted trees for sunlight, water, and nutrients (Photo 2).

Herbaceous vegetation can be killed during the growing season with a tractor- or ATV-mounted herbicide application. Mowing thick herbaceous vegetation with a bush-hog and then allowing it to grow back for a week or two prior to spraying can improve herbicide contact with actively-growing leaves and therefore increase chances for a successful kill. The herbicide application should be performed in the summer prior to deep tillage and tree planting. If herbaceous vegetation is not killed prior to tree planting, it is still possible for the planted trees to be successful if post-planting vegetation control is applied (as described below).

We recommend killing non-native woody plants with herbicide prior to tree planting. This can be accomplished by an aerial application during the growing season if the site is remote and if the woody vegetation is dense. Otherwise, it must be accomplished manually. If non-native woody plants are small, they can be killed by applying herbicide to the leaves with a backpack sprayer during the growing season. If they are too large for that, an application to the lower stem, using an herbicide approved basal-bark application, will often kill the plant. Another method is to cut the tree and apply herbicide to the stump immediately following the cutting (Photo 3). Basal-bark and cut-stump applications typically require a stronger mix.

Photo 2. The dominant plant species on this legacy surface mine is sericea lespedeza. Successful re-establishment of forest trees planted as young seedlings will require its temporary suppression.

of herbicide than leaf application, but these methods work well in late summer, fall, and early winter when leaf applications are not effective.

The type of vegetation present should be considered when selecting an herbicide and the season of application. Sericea lespedeza, for example, will not respond to certain herbicides intended to control grasses and is difficult to kill late in the growing season. Only herbicides intended to control woody vegetation will be effective for that purpose. Detailed herbicide recommendations are available in publications.
such as Miller and others (2010). For all herbicide applications, label directions should be followed and applicator safety should be assured by using appropriate safety procedures and equipment.

Loosen the Soil

When mine soils have become dense, loosening is needed to enable root growth, water infiltration, soil drainage, and air movement for growing trees. A deep tillage device (“soil ripper”) should be used to loosen the soil to a depth of 3 feet or more prior to tree planting on most mine sites (Photo 4). Application of deep tillage to active mines is described by Forest Reclamation Advisory No. 4; these practices can also be used on legacy mines.

The most common method of soil loosening is to use a stout single-shank ripping tooth on the back end of a large dozer, one with horsepower equivalent to or greater than a Caterpillar D8. Generally, single rips should be oriented across slopes to minimize soil erosion and potential gullying. On steeper slopes, a tracked excavator with a ripping tooth mounted on the end of the arm can be used (Photo 5).

Ripping should occur when the mine soil is relatively dry, usually late summer or fall prior to planting. When dry, compacted mine soils are loosened more effectively by the ripping tool. When soils are wet, the dozer will compact the soil where it tracks, making tillage less effective.

When sites are heavily compacted, this initial ripping operation can be followed by ripping another set of parallel rows in a direction perpendicular to the initial rips (“cross rips”). Cross-ripping is desirable because planted trees tend to extend roots preferentially along the ripped channel. Cross-ripped sites will give the planted trees greater stability and capability to resist windthrow than a single-directional rip.

Photo 4. The ripping tooth on the back end of this dozer can be inserted into and pulled through the ground to loosen the dense mine soil, improving its physical properties and ability to support planted trees.

Photo 5. An excavator outfitted with a ripping tooth can loosen compacted soils on slopes that are too steep for a dozer.

When cross-ripping slopes, operating the ripper in the up-down slope dimension first, followed by a second rip running either across the slope (along the contours) or at an angle to the slope (creating a pattern called “diamond rips”) will help to stabilize the surface and to hinder the waters from gullying in the up-down slope channels.

It is also desirable to break up the soil surface by using smaller shanks on either side of the main ripping tooth, especially if the site is not cross-ripped. The loosened surface aids growth of planted trees’ lateral feeder roots. It is also desirable to use coulter wheels to create a “mound” of soil over the rip (Photo 6). This treatment is especially desirable on near-level sites where water is unable to drain freely. Planting trees on the mound can aid tree survival if mine soils are poorly drained, and also makes it easy to locate seedlings for post-planting herbicide treatments and assessments. Mounding soil over the rip makes it easy to plant the tree, orients the tree directly above the rip for the best rooting opportunity, and provides a stable surface for the new seedling. Use of coulters is especially beneficial in fine-textured mine soils with few rocks, given the tendency of such soil materials to restrict water drainage. In contrast, use of coulters in rocky mine soils can be problematic given the tendency of coulters to ride up over the rocks.

The ripping or tillage operation should be designed with spacing to accommodate the tree planting plan, as trees should be planted on or near the deep rips. Ripping at 8- to 10-foot spacings will accommodate plantings of 600-700 trees per acre (Forest Reclamation Advisory No. 9).

In rocky mine soils, the dozer operator should attempt to pull the rocks up or twist them around for greater soil fragmentation. The operator should not lift the ripping shank to ride over the rocks unless the rock is so large that it cannot be
moved. The ripped area may have rocks pulled up to the surface creating a rocky, rough appearance.

If the soil ripping operation is expected to create disturbance with potential to allow soil movement off site, best management practices (BMPs) should be applied to limit soil erosion and losses. Most states have manuals that describe erosion prevention and sediment control BMPs (for example, see KDOW 2007). In our experience, soil ripping operations in Appalachian mine soils rarely cause or allow extensive soil movement.

Photo 6. Coulter wheels on the back of a dozer, with ripping tooth inserted into the soil. The coulter wheels pile loosened soil into a mound, allowing seedlings to be planted at a slightly elevated position above the land surface. Use of coulter wheels is advised for mine soils with poor water drainage and few large rocks.

Improve Soil Chemical Properties

Soil nutrients – especially nitrogen (N) and phosphorus (P) – are essential to tree growth. Adequate plant-available nutrients will enable quick growth of planted seedlings. This is desirable because planted trees’ likelihood of survival is improved once they become “free to grow” by overtopping their competition. Over the longer term, soil nutrients are essential to forest productivity.

Most unmanaged mine soils are low in plant-available N and P. Thus, fertilizers with these nutrients should be applied. Soil pH affects plant availability of soil P, so lime should be applied if soils are strongly acidic (pH <5).

If soil pH is less than 5.0, apply lime according to the soil test recommendations to raise soil pH to the 5.5-to-6.5 range. Lime can be broadcast over the site prior to tillage using agricultural methods such as truck- or tractor-mounted spreaders.

Fertilizers should be applied in a manner that confines availability to planted trees. Fertilizers should not be broadcast over the entire area, as that will stimulate rapid growth of competing vegetation (Evans and others 2013; Sloan and Jacobs 2013). If possible, apply fertilizer in narrow bands over the tree-planting row produced by soil ripping. On most mined lands, application of 50 to 75 lbs. N, 100 lbs P (230 lbs. P2O5), and 40 lbs. K (48 lbs. K2O) per acre will be adequate.

A way to stimulate early tree growth on nutrient deficient mine sites is to use fertilizer pellets or tablets. Pellets can be placed below the surface and about 2 to 4 inches from each planted seedling. Fertilizer pellets contain sufficient nutrients to help the seedlings become established but not enough nutrients to support long-term growth.

Fertilizer can be applied by a dispenser mounted on the front of the tillage dozer, allowing the fertilizer to be incorporated into the soil by the tillage operation. If this method or other mechanical methods of application are not possible, fertilizer can be applied by hand to the soil surface near each planted tree. This can be accomplished by spreading approximately one 16-ounce cup of di-ammonium phosphate fertilizer (18-46-0) in a circle around the stem of each tree, keeping it about 12 inches from the stem and spreading it evenly. If fertilizer is applied at planting as pellets, an additional application around the stem is also advised as a means of ensuring adequate nutrients for long-term growth. If the site survey or soil test reveals a likelihood of micronutrient deficiency, fertilizers with micronutrients should be used.

Use of controlled-release fertilizers, which dissolve and release nutrients slowly over time, has been found to provide good results in mine reforestation plantings (Sloan and Jacobs 2013).

Organic amendments, such as manures and composts, have been applied to improve soil properties on many mine sites. The precautions advised when using such materials on farmlands also apply to legacy mines. Additional precautions are in order for high-nutrient organic materials, such as fresh manures, given the sensitivity of Appalachian native trees to soil properties.

PLANT Native Trees

Seedlings should be hand-planted on or along the deep rips to enable tap roots to penetrate the soil easily. We recommend that trees be planted at rates of 600-700 per acre.

On mine lands with little surface relief, plant trees in a manner that places them in high ground, either over or adjacent to the ripped channel. On sites that are cross-ripped, plant trees near where the rips intersect to enable the lateral roots to extend easily in all four directions. On sites that are sloped and able to drain water easily, plant the trees in a position that is close to the natural
These volunteers are planting tree seedlings on a legacy surface mine that has been prepared for reforestation using the guidelines described in this Advisory. If adequate finances are available, professional firms can be engaged to plant trees.

Always plant trees in soil that has been loosened by the ripping operation, when possible. See Forest Reclamation Advisory No. 7 for a description of how to plant trees on mine sites.

Many legacy mine plantings use bare-root seedlings with no protective devices installed. For large-area plantings with thousands of seedlings, this practice can result in successful reforestation if most of the planted seedlings survive and grow. However, survival prospects can be improved by installing protective devices such as tree tubes and/or weed mats for individual seedlings.

Tree shelters, plastic cylinders that are placed around seedlings to create moist microenvironments, have been shown to both protect seedlings from browsing animals and to increase tree growth (Photo 8).

Fabric mats are another option for improving tree growth. Seedlings are placed in the center of a fabric mat (approximate 18 by 18 inches in size), and the edges of the mat are staked into the ground. These mats allow rainfall infiltration but prevent growth by competing plants in soil close to the seedling. The best protection is provided by protective devices that combine tree tubes with weed mats. When cost prevents use of protective devices for the entire job, they can be installed to improve success in high-visibility areas or for high-value seedlings.

PROTECT Planted Trees

Control Competing Vegetation

Because young trees are vulnerable, they should be protected. A primary threat is competing vegetation that prevents seedlings from accessing sunlight, water, and soil nutrients. Rodents may be attracted and sheltered by heavy herbaceous competition; they can kill the trees by girdling or de-barking them as a winter food source. Competing vegetation control will be essential on virtually all reforested legacy mines.

Immediately after planting while seedlings are still dormant, a pre-emergent herbicide can be applied to reduce emergence of herbaceous vegetation from seeds. This application can occur in a circle around each seedling or, if applied using a tractor or ATV, in bands over the tree rows.

In late spring or early summer, a post-emergent herbicide can be applied by “spot spraying” a circle around each planted tree, using tree-shields or other means to ensure that no herbicide contacts tree leaves (Photo 9). Herbicide applicators should be trained to recognize any problematic invasive shrubs and trees (Table 1), especially species present prior to clearing and/or along site borders. These should also be sprayed when they appear.

Herbicides should be applied only under calm atmospheric conditions, following label directions, and by applicators wearing protective gear.

The spring pre-emergent and summer post-emergent herbicide applications should be repeated in subsequent years until most of the trees have grown so they are above the herbaceous competition.

Here, we have not specified herbicide types. The herbicide should be selected after determining the types of plant species that require control and consulting a reference such as Miller and others (2010).
Table 1. Partial list of invasive species that are problematic on legacy mine sites and are capable of interfering with successful reforestation if not controlled. For photographs of these species, see USDA (2013), SE-EPPC (2013), or state conservation agency web sites.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Plant Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silktree or mimosa</td>
<td>Albizia julibrissin</td>
<td>Tree</td>
</tr>
<tr>
<td>Tree of heaven</td>
<td>Ailanthus altissima</td>
<td>Tree</td>
</tr>
<tr>
<td>Russian olive</td>
<td>Elaeagnus angustifolia</td>
<td>Tree</td>
</tr>
<tr>
<td>Autumn olive</td>
<td>Elaeagnus umbellata</td>
<td>Shrub</td>
</tr>
<tr>
<td>Japanese knotweed</td>
<td>Fallopia japonica</td>
<td>Shrub/bobry forb</td>
</tr>
<tr>
<td>Shrubby lespedeza</td>
<td>Lespedeza bicolor</td>
<td>Shrub</td>
</tr>
<tr>
<td>Sericea lespedeza</td>
<td>Lespedeza cuneata</td>
<td>Forb, legume</td>
</tr>
<tr>
<td>Japanese honeysuckle</td>
<td>Lonicera japonica</td>
<td>Shrub/woody vine</td>
</tr>
<tr>
<td>Bush honeysuckle</td>
<td>Lonicera maackii</td>
<td>Shrub</td>
</tr>
<tr>
<td>White sweet clover</td>
<td>Melilotus alba</td>
<td>Forb</td>
</tr>
<tr>
<td>Japanese stiltgrass</td>
<td>Microstegium vimineum</td>
<td>Grass</td>
</tr>
<tr>
<td>Chinese silver grass</td>
<td>Miscanthus sinensis</td>
<td>Grass</td>
</tr>
<tr>
<td>Princess tree</td>
<td>Paulownia tomentosa</td>
<td>Tree</td>
</tr>
<tr>
<td>Mile-a-minute vine</td>
<td>Polygonum perfoliatum</td>
<td>Vine</td>
</tr>
<tr>
<td>Kudzu</td>
<td>Pueraria montana</td>
<td>Woody vine</td>
</tr>
<tr>
<td>Multiflora rose</td>
<td>Rosa multiflora</td>
<td>Shrub</td>
</tr>
<tr>
<td>Tall fescue*</td>
<td>Schedonorus arundinaceus</td>
<td>Grass</td>
</tr>
<tr>
<td>Johnsongrass</td>
<td>Sorghum halepense</td>
<td>Grass</td>
</tr>
</tbody>
</table>

* Also known as Schedonorus phoenix.

Maintaining locked gates at critical access points can help limit uncontrolled human access and guard against these hazards.

Assess Survival and Re-Plant if Needed
The money and effort invested in the site should also be protected by assessing survival after the first growing season, generally in September or October, after stressful mid-summer conditions have passed but while living trees retain their leaves. Survival can be assessed by sampling or counting living trees within areas selected to represent the rest of the site. It is not necessary to count all surviving trees over the entire site.

A common method of survival assessment is to establish circular sampling plots at random locations and to count surviving trees within those plots. To define the plots, place a stake at the center point and use a rope of fixed length or tape to measure distances from the center point (Photo 10). For example: to assess survival within a 1/20th acre sampling plot, count every surviving tree within a circular area up to 26 feet 4 inches of a center point.

Sampling plots should be distributed evenly but located randomly over the site. This can be done by determining in advance how many plots are needed, then defining straight-line transects over the site and locating the plots at pre-defined distances along those transects. For example, if 10 plots are needed within a site that is long and rectangular, two transects could be defined along the site’s long dimension with 5 plots located...
Plot center points can be located along the transect while estimating distance by counting paces. It is essential that plots be located using a pre-determined method that considers the planted area’s configuration and size; plots should not be located by walking over the site, seeing what is out there, and on that basis deciding “this looks like a good spot.”

The number of plots that should be established is a matter of judgment. The sampling plots are intended to represent the entire site. More sampling plots, when appropriately placed, will provide a more accurate survival estimate than fewer plots. The following rule of thumb can be followed: For mine sites with fairly uniform soils and topography, a 5% sample or one 1/20th-acre plot per acre should be adequate; for areas with highly variable soils and topography, or mine sites for which irregular survival across the site is suspected for any reason, a 10% sample, or two 1/20th-acre plots per acre should be measured.

Count the number of living trees within each 1/20th acre circular plot and multiply that number by 20 to estimate the number of trees per acre. Record this per-acre number for each plot for a per acre estimate for that particular area. An overall per-acre estimate for the entire site can be determined by averaging the per-acre estimates for all 1/20th-acre plots. The species of each surviving tree should also be recorded.

Where weeds have been controlled successfully and the summer has not been unusually hot and dry, average survival should be higher than 70% after the first year – 490 trees per acre if 700 trees per acre were planted. If stocking is below this level, the site manager should determine the cause, work with the tree planter if a contractor was employed. If poor survival was due to poor seedling quality or improper planting, the manager can determine who is responsible and seek to engage that party in remedial re-planting. If first-year survival is not satisfactory, “holes” left by non-surviving trees should be re-planted during the next winter.

By the end of the 3rd, 4th or 5th growing season, most planted trees should be above the competing herbaceous vegetation (Photo 10). A final survival assessment should be done after the third or fourth growing season using the same assessment procedures described above. At this time, a minimum of 400 well-distributed, healthy, trees per acre will ensure reforestation success.

During the site surveys, the presence of invasive species with potential to outgrow and out-compete planted seedlings should be visually assessed. If present at densities sufficient to interfere with planted seedlings’ survival within certain areas, such species should be controlled or removed when possible.

Expected Outcome

Re-establishing native Appalachian forests on legacy surface mines that are not being managed for other purposes can produce marketable timber and environmental benefits such as watershed protection, carbon sequestration, and improved wildlife habitat. Until recently with the adoption of the Forestry Reclamation Approach (Forest Reclamation Advisory No. 2), common coal-mine reclamation practices under SMCRA often created conditions unfavorable to reforestation. When the guidelines described above are applied, productive Appalachian forests can be restored on such mined lands (Photo 11).

Summary: Step-by-Step Guidance

A step-by-step summary and timeline for the recommended procedures follows below (Table 2). Depending on site conditions, all treatments may not be needed.
Photo 11. Appalachian hardwood trees are emerging from herbaceous vegetation on this legacy surface mine during the third growing season after using methods described in this document.

Table 2. Step-by-step summary of the guidelines presented in this publication

<table>
<thead>
<tr>
<th>Month</th>
<th>Year</th>
<th>Task</th>
<th>Task Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior to July 1</td>
<td></td>
<td>Survey vegetation, assess soil properties</td>
<td>Survey the area to assess vegetation; test soil physical and chemical properties. Use information to develop a reforestation plan for the site.</td>
</tr>
<tr>
<td>Summer or fall 1</td>
<td></td>
<td>Determine species to plant, order trees</td>
<td>If the site is to be planted by a contractor, that contract should be put in place. The contractor may be able to provide seedlings.</td>
</tr>
<tr>
<td>July 1</td>
<td></td>
<td>Remove and control existing vegetation</td>
<td>Broadcast spray herbicide to control vegetation. If large invasive shrubs and trees are present, control via aerial herbicide or manual removal. Be sure to kill invasive shrubs and trees with capability to re-sprout from living roots.</td>
</tr>
<tr>
<td>Aug.-Sept. 1</td>
<td></td>
<td>Apply lime, if needed</td>
<td>Apply lime if/as needed to raise pH to the 5.5 – 6.5 range.</td>
</tr>
<tr>
<td>Sept.-Oct. 1</td>
<td></td>
<td>Deep-till and fertilize</td>
<td>Loosen soil with a deep-tillage tool, ripping with 8–to-10 foot spacing between rows. Band-apply fertilizer along the rows.</td>
</tr>
<tr>
<td>Jan.-March* 2</td>
<td></td>
<td>Plant trees</td>
<td>Plant tree seedlings correctly [recommended planting rate: 600 - 700 per acre].</td>
</tr>
<tr>
<td>Feb.-March* 2</td>
<td></td>
<td>Weed control</td>
<td>Band spray a pre-emergent herbicide over the tree rows.</td>
</tr>
<tr>
<td>May-June 2</td>
<td></td>
<td>Weed control</td>
<td>Spot-spray herbicide around each tree seedling, using tree-shields to protect seedlings from herbicide drift. Herbicide emergent invasive shrubs and trees if present.</td>
</tr>
<tr>
<td>Sept.-Oct. 2</td>
<td></td>
<td>Assess tree survival</td>
<td>Survey tree survival, determine if re-planting is needed.</td>
</tr>
<tr>
<td>Jan.-March* 3</td>
<td></td>
<td>Replant if needed</td>
<td>If the tree survival assessment reveals inadequate survival in any area, replant to fill in between surviving trees as needed to assure adequate stocking.</td>
</tr>
<tr>
<td>Feb.-March* 3</td>
<td></td>
<td>Weed control</td>
<td>Repeat the pre-emergent herbicide.</td>
</tr>
<tr>
<td>May-June 3</td>
<td></td>
<td>Weed control</td>
<td>Repeat the spot-spray herbicide.</td>
</tr>
<tr>
<td>May-June 4</td>
<td></td>
<td>Assess vegetation</td>
<td>Walk the site to determine if the majority of planted trees have grown so uppermost leaves are above herbaceous competition.</td>
</tr>
<tr>
<td>May-June 4</td>
<td></td>
<td>Weed control</td>
<td>Repeat the spot-spray herbicide [if needed].</td>
</tr>
<tr>
<td>Sept.-Oct. 4</td>
<td></td>
<td>Final survey</td>
<td>Survey tree stocking. Look for a minimum of 400 planted trees/acre.</td>
</tr>
</tbody>
</table>

* Tree planting and pre-emergent herbicide application can be extended through April in northern Appalachia.
References

Forest Reclamation Advisories available from http://arri.osmre.gov/

Forest Reclamation Advisory 2. The Forestry Reclamation Approach.

Forest Reclamation Advisory 4. Loosening Compacted Soils on Mine Sites

Forest Reclamation Advisory 7. Planting Hardwood Tree Seedlings on Reclaimed Mine Land in Appalachia.

Forest Reclamation Advisory 9. Selecting Tree Species for Reforestation of Appalachian Mined Land.

Forest Reclamation Advisory 10. Reforestation to Enhance Appalachian Mined Lands as Habitat for Terrestrial Wildlife.

Other References

Acknowledgments

Thanks to personnel with Green Forests Work (GFW) for their assistance in developing this publication. GFW personnel can provide technical and other types of assistance to parties who are attempting to re-establish Appalachian forest vegetation on legacy surface mines.

Faculty and researchers from the following universities and organizations contributed to this Forest Reclamation Advisory: American Birds Conservancy, Appalachian Mountains Joint Venture, Berea College, Green Forests Work, Indiana University of Pennsylvania, Ohio University, Ohio State University, Pennsylvania State University, Purdue University, The American Chestnut Foundation, Southern Illinois University, United States Forest Service, United States Geological Survey, University of Kentucky, University of Maryland, University of Tennessee, Virginia Tech, West Virginia University, and Wilkes University.

Authors

James A. Burger (jaburger@vt.edu) and Carl E. Zipper (czip@vt.edu), Virginia Tech, Blacksburg.

Patrick N. Angel (pangel@osmre.gov), Office of Surface Mining, U.S.D.I., London KY.

Nathan Hall (nathanhall@greenforestwork.org), Green Forests Work, Lexington KY.

Jeffrey G. Skousen (jskousen@wvu.edu), West Virginia University, Morgantown.

Christopher D. Barton (barton@uky.edu), University of Kentucky, Lexington.

Scott Eggerud (seggerud@osmre.gov), Office of Surface Mining, U.S.D.I., Pittsburgh PA.